GEARD MOTOR
ギヤードモータ

特長 Character

小型・軽量

ギヤードモータ専用モータとして、小型化を実現

静かな運転

二分割形本体ケースの採用により、加工、組立精度の向上
歯車のかみ合い音の低減を実現
制振鋼板製フアンカバーの採用により、低騒音化を実現
ブレーキの吸引音低減を実現
ブレーキにフアンライニング方式と、制振鋼板製可動鉄心を採用

自在方向取付

高級グリースを使用

CONTENTS

特長	小型・軽量
呼び形態	静かな運転
仕様	自在方向取付
機械構成	高級グリースを使用
出力軸端カップ加工寸法	自在方向取付
型番選定	高級グリースを使用
定格伝達能力	自在方向取付
出力軸許容トルク	自在方向取付
オーバーヘン超強度	自在方向取付
ブレーキ内蔵形仕様	自在方向取付
ブレーキ接続要領と制動遅れ時間	自在方向取付
外形寸法図	自在方向取付
単相	自在方向取付
三相	自在方向取付
半相ブレーキ仕	自在方向取付
全相ブレーキ仕	自在方向取付
インバータ駆動専用	自在方向取付
ブレーキ構造	自在方向取付
呼び形式

GEseries

主仕様

標準品

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>保護構造</td>
<td>屋内形</td>
</tr>
<tr>
<td>電圧・周波数</td>
<td>単相(100V 50/60Hz) 三相(200/200/220V 50/60/60Hz)</td>
</tr>
<tr>
<td>標準数</td>
<td>4P</td>
</tr>
<tr>
<td>定格</td>
<td>連続</td>
</tr>
<tr>
<td>級類</td>
<td>E種(0.1〜0.75kW) B種(1.5〜2.2kW)</td>
</tr>
<tr>
<td>プレーキ形式</td>
<td>直流スプリング制御方式（電源装置内蔵・手動解放は出来ません）（手動開放レバー付はオプション）</td>
</tr>
<tr>
<td>プレーキトルク</td>
<td>150％以上（対50Hzモータ定格トルク）、（但し、0.1kWは300％）</td>
</tr>
<tr>
<td>滑式</td>
<td>グリース潤滑（グリースを充填して出荷しています）</td>
</tr>
<tr>
<td>封入グリース</td>
<td>日本石油バーロックスジブセール100号（極圧添加剤入りウレア系）</td>
</tr>
<tr>
<td>口出線方式</td>
<td>端子箱・端子台方式（出力線より見て左側取付）</td>
</tr>
<tr>
<td>周回温度</td>
<td>-15〜40℃（結露のない場合）</td>
</tr>
<tr>
<td>温度上昇限界</td>
<td>周回温度 +75℃(0.1〜0.4kW)+80℃(0.75〜2.2kW)</td>
</tr>
<tr>
<td>塗装色</td>
<td>P13-747（マシユ587/6）薄い白色</td>
</tr>
<tr>
<td>付属品</td>
<td>出力軸・軸端キーニ（JIS B 1301-1986）</td>
</tr>
<tr>
<td>出力軸</td>
<td>軸端ねじ加工</td>
</tr>
<tr>
<td>電源装置</td>
<td>半波整流早切りサージ吸収形（端子箱に内蔵・・・0.1〜0.75kW）</td>
</tr>
</tbody>
</table>

準標準品

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>保護構造</td>
<td>屋外形（単相は屋内形のみ）</td>
</tr>
<tr>
<td>電圧・周波数</td>
<td>単相(200V 50/60Hz) 三相(400V 50Hz 400V 60Hz)</td>
</tr>
<tr>
<td>インバータ対応</td>
<td>インバータ駆動専用(0.4〜2.2kW)</td>
</tr>
<tr>
<td>プレーキトルク</td>
<td>100％以上(50Hz時)</td>
</tr>
<tr>
<td>端子箱取付方式</td>
<td>出力線より見て右側取付</td>
</tr>
<tr>
<td>手動開放装置</td>
<td>手動開放レバー</td>
</tr>
</tbody>
</table>

インバータ駆動専用ギヤードモータ

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>モーター容量kW</td>
<td>0.4 0.75 1.5 2.2</td>
</tr>
<tr>
<td>電動機の種類</td>
<td>三相電動機</td>
</tr>
<tr>
<td>極数</td>
<td>4P</td>
</tr>
<tr>
<td>保護形</td>
<td>全閉外扇形</td>
</tr>
<tr>
<td>電源</td>
<td>200/200/220V 50/60/60Hz</td>
</tr>
<tr>
<td>絶縁の種類</td>
<td>E種</td>
</tr>
<tr>
<td>温度上昇限界</td>
<td>周回温度 +75℃(最高115℃)</td>
</tr>
</tbody>
</table>
機種構成

<table>
<thead>
<tr>
<th>機種</th>
<th>モータ容量</th>
<th>相数</th>
<th>始動形式</th>
<th>呼称減速比</th>
</tr>
</thead>
<tbody>
<tr>
<td>単相</td>
<td></td>
<td></td>
<td>分相始動</td>
<td>全閉外扇形</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>コンデンサ始動コンデンサラン</td>
<td>全閉扇形</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>直入れ</td>
<td>全閉自冷形</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>直入れ</td>
<td>全閉扇形</td>
</tr>
<tr>
<td>三相</td>
<td></td>
<td></td>
<td>分相始動</td>
<td>全閉外扇形</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>コンデンサ始動コンデンサラン</td>
<td>全閉扇形</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>直入れ</td>
<td>全閉扇形</td>
</tr>
</tbody>
</table>

出力軸軸端タップ加工寸法

<table>
<thead>
<tr>
<th>モータ容量</th>
<th>減速比</th>
<th>出力軸軸径</th>
<th>タップ寸法</th>
<th>タップ深さ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![出力軸軸端タップ加工寸法](image-url)
型番選定

選定に際して

1 荷重係数について
荷重の種類、運転時間、起動停止の頻度、荷重変動の激しい場合、などの条件に応じて荷重係数表より荷重係数を選定して等価入力容量または、等価出力トルクを求め下さい。

2 オ - バ - ハングロ - ドについて

オ - バ - ハングロ - ドとは、軸に作用する懸垂荷重のことで減速機を選定する場合には必ず検討する必要があります。
通常、負荷トルクを回転体（スプロケット、ブレーキ等）の半径で除した値がオ - バ - ハングロ - ドです。

修正許容ラジアル荷重 = 許容ラジアル荷重

作用位置修正係数

駆動方式による修正係数

作用位置

<table>
<thead>
<tr>
<th>θ</th>
<th>修正係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>0.6</td>
</tr>
<tr>
<td>0°</td>
<td>1.0</td>
</tr>
<tr>
<td>60°</td>
<td>0.8</td>
</tr>
</tbody>
</table>

駆動方式による修正係数

<table>
<thead>
<tr>
<th>駆動方式</th>
<th>修正係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>単列チェイン</td>
<td>0.8</td>
</tr>
<tr>
<td>複列チェイン</td>
<td>0.8</td>
</tr>
<tr>
<td>ベルト</td>
<td>0.8</td>
</tr>
<tr>
<td>平ベルト</td>
<td>0.8</td>
</tr>
<tr>
<td>車</td>
<td>0.8</td>
</tr>
</tbody>
</table>

荷重位置ができるだけ出力軸の根元側に取付けて下さい。
定格伝達能力

出力軸許容トルク・オーバーハングロード（単位：N）

<table>
<thead>
<tr>
<th>モータ容量</th>
<th>出力軸回転数</th>
<th>呼称減速比</th>
<th>実減速比</th>
<th>出力軸許容トルク</th>
<th>出力軸許容トルク</th>
<th>出力軸許容スラスト荷重</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.0</td>
<td>600.0</td>
<td>3</td>
<td>3.05</td>
<td>1.7</td>
<td>1.5</td>
<td>690</td>
</tr>
<tr>
<td>300.0</td>
<td>360.0</td>
<td>5</td>
<td>4.90</td>
<td>2.9</td>
<td>2.5</td>
<td>690</td>
</tr>
<tr>
<td>150.0</td>
<td>180.0</td>
<td>10</td>
<td>9.93</td>
<td>5.9</td>
<td>4.9</td>
<td>690</td>
</tr>
<tr>
<td>100.0</td>
<td>120.0</td>
<td>15</td>
<td>14.81</td>
<td>8.8</td>
<td>7.4</td>
<td>735</td>
</tr>
<tr>
<td>75.0</td>
<td>90.0</td>
<td>20</td>
<td>20.08</td>
<td>11.3</td>
<td>9.5</td>
<td>1030</td>
</tr>
<tr>
<td>60.0</td>
<td>72.0</td>
<td>25</td>
<td>23.85</td>
<td>14.2</td>
<td>11.8</td>
<td>1180</td>
</tr>
<tr>
<td>50.0</td>
<td>60.0</td>
<td>30</td>
<td>28.88</td>
<td>17.2</td>
<td>14.2</td>
<td>1180</td>
</tr>
<tr>
<td>37.5</td>
<td>45.0</td>
<td>40</td>
<td>37.92</td>
<td>22.6</td>
<td>19.1</td>
<td>1230</td>
</tr>
<tr>
<td>30.0</td>
<td>36.0</td>
<td>50</td>
<td>47.32</td>
<td>27.5</td>
<td>23.5</td>
<td>1280</td>
</tr>
<tr>
<td>25.0</td>
<td>30.0</td>
<td>60</td>
<td>58.96</td>
<td>33.4</td>
<td>27.5</td>
<td>1620</td>
</tr>
<tr>
<td>18.8</td>
<td>22.5</td>
<td>80</td>
<td>80.05</td>
<td>45.1</td>
<td>37.2</td>
<td>1670</td>
</tr>
<tr>
<td>15.0</td>
<td>18.0</td>
<td>100</td>
<td>95.44</td>
<td>55.9</td>
<td>47.1</td>
<td>1720</td>
</tr>
<tr>
<td>12.5</td>
<td>15.0</td>
<td>120</td>
<td>114.05</td>
<td>66.8</td>
<td>55.9</td>
<td>2350</td>
</tr>
<tr>
<td>9.4</td>
<td>11.3</td>
<td>160</td>
<td>151.67</td>
<td>90.3</td>
<td>75.5</td>
<td>2350</td>
</tr>
<tr>
<td>7.5</td>
<td>9.0</td>
<td>200</td>
<td>168.76</td>
<td>112.0</td>
<td>94.2</td>
<td>2350</td>
</tr>
</tbody>
</table>

出力軸許容スラスト荷重（単位：N）

<table>
<thead>
<tr>
<th>モータ容量</th>
<th>出力軸回転数</th>
<th>呼称減速比</th>
<th>実減速比</th>
<th>出力軸許容トルク</th>
<th>出力軸許容トルク</th>
<th>出力軸許容スラスト荷重</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.0</td>
<td>600.0</td>
<td>3</td>
<td>3.05</td>
<td>1.7</td>
<td>1.5</td>
<td>690</td>
</tr>
<tr>
<td>300.0</td>
<td>360.0</td>
<td>5</td>
<td>4.90</td>
<td>2.9</td>
<td>2.5</td>
<td>690</td>
</tr>
<tr>
<td>150.0</td>
<td>180.0</td>
<td>10</td>
<td>9.93</td>
<td>5.9</td>
<td>4.9</td>
<td>690</td>
</tr>
<tr>
<td>100.0</td>
<td>120.0</td>
<td>15</td>
<td>14.81</td>
<td>8.8</td>
<td>7.4</td>
<td>735</td>
</tr>
<tr>
<td>75.0</td>
<td>90.0</td>
<td>20</td>
<td>20.08</td>
<td>11.3</td>
<td>9.5</td>
<td>1030</td>
</tr>
<tr>
<td>60.0</td>
<td>72.0</td>
<td>25</td>
<td>23.85</td>
<td>14.2</td>
<td>11.8</td>
<td>1180</td>
</tr>
<tr>
<td>50.0</td>
<td>60.0</td>
<td>30</td>
<td>28.88</td>
<td>17.2</td>
<td>14.2</td>
<td>1180</td>
</tr>
<tr>
<td>37.5</td>
<td>45.0</td>
<td>40</td>
<td>37.92</td>
<td>22.6</td>
<td>19.1</td>
<td>1230</td>
</tr>
<tr>
<td>30.0</td>
<td>36.0</td>
<td>50</td>
<td>47.32</td>
<td>27.5</td>
<td>23.5</td>
<td>1280</td>
</tr>
<tr>
<td>25.0</td>
<td>30.0</td>
<td>60</td>
<td>58.96</td>
<td>33.4</td>
<td>27.5</td>
<td>1620</td>
</tr>
<tr>
<td>18.8</td>
<td>22.5</td>
<td>80</td>
<td>80.05</td>
<td>45.1</td>
<td>37.2</td>
<td>1670</td>
</tr>
<tr>
<td>15.0</td>
<td>18.0</td>
<td>100</td>
<td>95.44</td>
<td>55.9</td>
<td>47.1</td>
<td>1720</td>
</tr>
<tr>
<td>12.5</td>
<td>15.0</td>
<td>120</td>
<td>114.05</td>
<td>66.8</td>
<td>55.9</td>
<td>2350</td>
</tr>
<tr>
<td>9.4</td>
<td>11.3</td>
<td>160</td>
<td>151.67</td>
<td>90.3</td>
<td>75.5</td>
<td>2350</td>
</tr>
<tr>
<td>7.5</td>
<td>9.0</td>
<td>200</td>
<td>168.76</td>
<td>112.0</td>
<td>94.2</td>
<td>2350</td>
</tr>
<tr>
<td>モーター容量</td>
<td>出力軸回転数</td>
<td>呼称減速比</td>
<td>実減速比</td>
<td>出力軸許容トルク・・・</td>
<td>出力軸許容トルク・・・</td>
<td>出力軸許容スラスト荷重（）</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>500.0</td>
<td>600.0</td>
<td>3</td>
<td>2.88</td>
<td>14.0</td>
<td>11.0</td>
<td>980</td>
</tr>
<tr>
<td>300.0</td>
<td>360.0</td>
<td>5</td>
<td>4.86</td>
<td>23.5</td>
<td>19.6</td>
<td>980</td>
</tr>
<tr>
<td>150.0</td>
<td>180.0</td>
<td>10</td>
<td>10.00</td>
<td>47.1</td>
<td>39.2</td>
<td>1470</td>
</tr>
<tr>
<td>100.0</td>
<td>120.0</td>
<td>15</td>
<td>14.54</td>
<td>69.7</td>
<td>57.9</td>
<td>1570</td>
</tr>
<tr>
<td>75.0</td>
<td>90.0</td>
<td>20</td>
<td>19.44</td>
<td>92.2</td>
<td>76.5</td>
<td>1770</td>
</tr>
<tr>
<td>60.0</td>
<td>72.0</td>
<td>25</td>
<td>22.95</td>
<td>116.0</td>
<td>95.2</td>
<td>1960</td>
</tr>
<tr>
<td>50.0</td>
<td>60.0</td>
<td>30</td>
<td>30.60</td>
<td>133.0</td>
<td>114.0</td>
<td>2160</td>
</tr>
<tr>
<td>37.5</td>
<td>45.0</td>
<td>40</td>
<td>37.15</td>
<td>180.0</td>
<td>149.0</td>
<td>2650</td>
</tr>
<tr>
<td>30.0</td>
<td>36.0</td>
<td>50</td>
<td>45.86</td>
<td>222.0</td>
<td>185.0</td>
<td>2750</td>
</tr>
<tr>
<td>25.0</td>
<td>30.0</td>
<td>60</td>
<td>55.82</td>
<td>273.0</td>
<td>228.0</td>
<td>3920</td>
</tr>
<tr>
<td>18.8</td>
<td>22.5</td>
<td>80</td>
<td>76.12</td>
<td>351.0</td>
<td>299.0</td>
<td>3920</td>
</tr>
<tr>
<td>15.0</td>
<td>18.0</td>
<td>100</td>
<td>95.11</td>
<td>439.0</td>
<td>366.0</td>
<td>3920</td>
</tr>
<tr>
<td>12.5</td>
<td>15.0</td>
<td>120</td>
<td>113.20</td>
<td>541.0</td>
<td>476.0</td>
<td>6670</td>
</tr>
<tr>
<td>9.4</td>
<td>11.3</td>
<td>160</td>
<td>117.42</td>
<td>703.0</td>
<td>586.0</td>
<td>6970</td>
</tr>
<tr>
<td>7.5</td>
<td>9.0</td>
<td>200</td>
<td>174.91</td>
<td>770.0</td>
<td>741.0</td>
<td>7060</td>
</tr>
</tbody>
</table>

表の出力軸回転数は、適定用の概ね回転数です。モーターのすべりや実減速比によって若干異なります。
ブレーキ主仕様

<table>
<thead>
<tr>
<th>モータ容量 kW</th>
<th>定格制動トルク</th>
<th>ブレーキコイル概略電流 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>50Hz (%)</td>
</tr>
<tr>
<td>0.1</td>
<td>1.91</td>
<td>300</td>
</tr>
<tr>
<td>0.2</td>
<td>1.91</td>
<td>150</td>
</tr>
<tr>
<td>0.4</td>
<td>3.82</td>
<td>150</td>
</tr>
<tr>
<td>0.75</td>
<td>7.16</td>
<td>150</td>
</tr>
<tr>
<td>1.5</td>
<td>14.30</td>
<td>150</td>
</tr>
<tr>
<td>2.2</td>
<td>21.0</td>
<td>150</td>
</tr>
</tbody>
</table>

注意

ブレーキリード線には、赤色の絶縁付き圧着端子がついています。結線を変更する時は、モータのリード線と間違わないようにご注意下さい。

1) インバータ駆動または入力電源を制御する場合は、ブレーキをインバータなどの電源側（別切り）に接続して下さい。
2) 1.5kW・2.2kWは400V級の場合のみ、接点保護およびサージ電圧の低減のために抵抗器が必要です。この時、ブレーキの制動遅れ時間が少し長くなります。

抵抗器

<table>
<thead>
<tr>
<th>モータ出力kW</th>
<th>抵抗器仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5〜2.2</td>
<td>3.5kΩ 40W</td>
</tr>
</tbody>
</table>

端子箱

- **0.1〜0.4kW ブレーキなし**
- **0.1〜0.4kW ブレーキ付**
- **0.75〜2.2kW ブレーキなし**
- **0.75〜2.2kW ブレーキ付**
プレーキ接続要領と制動遅れ時間

プレーキ仕様は、プレーキ接続方法によって、プレーキ制動遅れ時間（電源をOFFしてからプレーキが作動を開始するまでの時間）が変わります。
用途に応じて最適な接続を行ってください。
●なお、三相プレーキ付0.1～0.4kWは同時切りで結線して出荷しておりますので、ご注意下さい。

<table>
<thead>
<tr>
<th>モータル</th>
<th>出力</th>
<th>0.1kW以下</th>
<th>0.4kW以下</th>
</tr>
</thead>
<tbody>
<tr>
<td>入力</td>
<td>出力</td>
<td>0.1kW以下</td>
<td>0.4kW以下</td>
</tr>
<tr>
<td>同時切り</td>
<td>別切り</td>
<td>直流切り(単切り)</td>
<td></td>
</tr>
<tr>
<td>0.1kW以下</td>
<td>0.4kW以下</td>
<td></td>
<td></td>
</tr>
<tr>
<td>損害時間</td>
<td>0.2～0.5秒</td>
<td>0.1～0.3秒</td>
<td>0.01～0.04秒</td>
</tr>
</tbody>
</table>

（注）1. 図中＊は、接続リード線を示します。必ずU-B2（上段）に接続してください。また、別切り時は必ず取り外してください。
2. 別切り及び直流切り(単切り)時には、端子台の接続端子を接続方法に応じて上図により取り外してください。
3. 0.1kW～2.2kWの端子台は上下段となっております。モータ及びプレーキ電源の配線は、必ず上図に示す上段の端子ねじと接続してください。下段に接続されるとプレーキが解放しにくくなりますのでご注意ください。
GE SNL

単相

040H4

質量

040H4

質量

減速比

回転数（回転数）

減速比

回転数（回転数）

040H4

質量

040H4

質量

減速比

回転数（回転数）

減速比

回転数（回転数）

C-11
010H4

減速比
回転数（×10）

減速比
回転数（×10）

減速比
回転数（×10）

減速比
回転数（×10）
脚取付相 (020H4, 020H4) 外形寸法図

<table>
<thead>
<tr>
<th>020H4</th>
<th>□質量 □□□□□</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>020H4</th>
<th>□質量 □□□□□</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>020H4</th>
<th>□質量 □□□□□</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>020H4</th>
<th>□質量 □□□□□</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

揃載図面に該当する定格伝達能力表は、各ページをご覧ください。
脚取付図
外形寸法図

揺戻図面に該当する定格伝達能力表は○○ページをご覧ください。

075H4

質量

減速比
回転数

075H4

質量

減速比
回転数
220H4

質量

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

220H4

質量

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GEseries

010H4

質量

減速比
回転数(回)

減速比
回転数(回)

C-18
GESSBL

（図面、詳細）外形寸法図

掲載図に該当する定格伝達能力表は○○ページをご覧ください。

<table>
<thead>
<tr>
<th>020H4</th>
<th>質量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>020H4</th>
<th>質量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>020H4</th>
<th>質量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>020H4</th>
<th>質量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
外形寸法図

<table>
<thead>
<tr>
<th>010H4</th>
<th>質量</th>
<th>010H4</th>
<th>質量</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数(回転数)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数(回転数)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>010H4</th>
<th>質量</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数(回転数)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>減速比</th>
<th>回転数(回転数)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C-21
脚取付（三相ブレーキ）外形寸法図

040H4

質量

減速比

回転数

減速比

回転数

C-23
ブレーキ付三相

150H4

質量

<table>
<thead>
<tr>
<th>減速比</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>回転数（rpm）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

質量

<table>
<thead>
<tr>
<th>減速比</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>回転数（rpm）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

150H4

質量

<table>
<thead>
<tr>
<th>減速比</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>回転数（rpm）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>減速比</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>回転数（rpm）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ブレーキ付三相

脚取付 (三相)外形寸法図

掲載図面に該当する定格伝達能力表は①②ページをご覧ください。
ブレーキ構造

ブレーキの特徴・構造

1. 低騒音
 ブレーキカバー、リング等の採用により、ブレーキ動作時の衝撃音（解放および制動音）を大幅に低減しました。

2. 電源装置内蔵
 電源装置にサージ吸収器を内蔵。早切り時のサージを低減し、補助接点での使用が可能となりました。

3. 容易な配線
 (または) 端子台の採用により、配線が容易になりました。このことにより、インバータ早切り時の空中配線が不要です。（(または)）

4. 長寿命
 面制動方式により、安定したブレーキ性能を発揮、強力で長寿命です。

5. 安全ブレーキ
 無効制動方式（スプリング制動方式）ですので、安全ブレーキとなります。

6. モータペースト材使用
 ブレーキライニングはモータペースト材を使用しています。

7. クリーン性
 全閉構造の採用により、ブレーキライニングの摩擦粉を外部にまき散らさず、クリーンな環境を維持できます。

<table>
<thead>
<tr>
<th>品番</th>
<th>部品名</th>
<th>品番</th>
<th>部品名</th>
<th>品番</th>
<th>部品名</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>リング</td>
<td>02</td>
<td>ブレーキカバー</td>
<td>03</td>
<td>リング</td>
</tr>
<tr>
<td>04</td>
<td>十字穴付きすべねじ</td>
<td>05</td>
<td>支持板</td>
<td>06</td>
<td>モータ軸</td>
</tr>
<tr>
<td>07</td>
<td>リング（屋外型のみ）</td>
<td>08</td>
<td>六角ナット</td>
<td>09</td>
<td>電源装置（04〜05〜06〜）</td>
</tr>
<tr>
<td>09</td>
<td>キー</td>
<td>10</td>
<td>止めナット</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ブレーキハブ</td>
<td>12</td>
<td>ブレーキライニング</td>
<td>13</td>
<td>可動鉄心</td>
</tr>
<tr>
<td>14</td>
<td>ファンカバー</td>
<td>15</td>
<td>固定鉄心</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
手動解放レバー寸法

<table>
<thead>
<tr>
<th>出力</th>
<th>寸法 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(注)その他の寸法は、標準品と同一です。

外観図